Computational gene prediction using multiple sources of evidence.
نویسندگان
چکیده
This article describes a computational method to construct gene models by using evidence generated from a diverse set of sources, including those typical of a genome annotation pipeline. The program, called Combiner, takes as input a genomic sequence and the locations of gene predictions from ab initio gene finders, protein sequence alignments, expressed sequence tag and cDNA alignments, splice site predictions, and other evidence. Three different algorithms for combining evidence in the Combiner were implemented and tested on 1783 confirmed genes in Arabidopsis thaliana. Our results show that combining gene prediction evidence consistently outperforms even the best individual gene finder and, in some cases, can produce dramatic improvements in sensitivity and specificity.
منابع مشابه
JIGSAW: integration of multiple sources of evidence for gene prediction
MOTIVATION Computational gene finding systems play an important role in finding new human genes, although no systems are yet accurate enough to predict all or even most protein-coding regions perfectly. Ab initio programs can be augmented by evidence such as expression data or protein sequence homology, which improves their performance. The amount of such evidence continues to grow, but computa...
متن کاملSCGPred: A Score-based Method for Gene Structure Prediction by Combining Multiple Sources of Evidence
Predicting protein-coding genes still remains a significant challenge. Although a variety of computational programs that use commonly machine learning methods have emerged, the accuracy of predictions remains a low level when implementing in large genomic sequences. Moreover, computational gene finding in newly sequenced genomes is especially a difficult task due to the absence of a training se...
متن کاملComputational Prediction of the Effects of Single Nucleotide Polymorphisms of the Gene Encoding Human Endothelial Nitric Oxide Synthase
ABSTRACT Background and Objective: Genetic variations in the gene encoding endothelial nitric oxide synthase (eNOS) enzyme affect the susceptibility to cardiovascular disease. Identification of the way these changes affect eNOS structure and function in laboratory conditions is difficult and time-consuming. Thus, it seems essential to ...
متن کاملUsing native and syntenically mapped cDNA alignments to improve de novo gene finding
MOTIVATION Computational annotation of protein coding genes in genomic DNA is a widely used and essential tool for analyzing newly sequenced genomes. However, current methods suffer from inaccuracy and do poorly with certain types of genes. Including additional sources of evidence of the existence and structure of genes can improve the quality of gene predictions. For many eukaryotic genomes, e...
متن کاملNoise tolerance of Multiple Classifier Systems in data integration-based gene function prediction
The availability of various high-throughput experimental and computational methods developed in the last decade allowed molecular biologists to investigate the functions of genes at system level opening unprecedented research opportunities. Despite the automated prediction of genes functions could be included in the most difficult problems in bioinformatics, several recently published works sho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genome research
دوره 14 1 شماره
صفحات -
تاریخ انتشار 2004